The hallmarks of aging

a cartoon of a bear in snow wearing a red scarf

Excerpt

Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution.

This review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.

At first sight, cancer and aging may seem to be opposite processes: cancer is the consequence of an aberrant gain of cellular fitness, whereas aging is characterized by a loss of fitness. At a deeper level, however, cancer and aging share common origins. The time-dependent accumulation of cellular damage is widely considered to be the general cause of aging. Concomitantly, cellular damage may occasionally provide aberrant advantages to certain cells, which can eventually produce cancer. Therefore, cancer and aging can be regarded as two different manifestations of the same underlying process — namely, the accumulation of cellular damage. In addition, several of the pathologies associated with aging, such as atherosclerosis and inflammation, involve uncontrolled cellular overgrowth or hyperactivity.

Based on this conceptual framework, several critical questions have arisen in the field of aging regarding the physiological sources of aging-causing damage, the compensatory responses that try to re-establish homeostasis, the interconnection between the different types of damage and compensatory responses, and the possibilities to intervene exogenously to delay aging. We propose nine candidate hallmarks that are generally considered to contribute to the aging process and together determine the aging phenotype. Each hallmark should ideally fulfill the following criteria: (1) it should manifest during normal aging; (2) its experimental aggravation should accelerate aging; and (3) its experimental amelioration should retard the normal aging process and hence increase healthy lifespan.

FULL TEXT: Cell