Calorie restriction or exercise …

a woman riding a bike

Excerpt

Coronary heart disease (CHD) risk factors and the risk of CHD increase with increased adiposity. Fat loss induced by negative energy balance improves all metabolic CHD risk factors.

To determine whether fat loss induced by long-term calorie restriction (CR) or increased energy expenditure induced by exercise (EX) has different effects on CHD risk factors in nonobese subjects, we conducted a 1-yr controlled trial involving 48 nonobese subjects who were randomly assigned to one of three groups: CR, 20% CR diet (n = 18); EX, 20% increase in energy expenditure through daily exercise with no increase in energy intake (n = 18); or HL, healthy lifestyle guidelines (n = 10). Subjects were 29 women and 17 men aged 57 ± 3 yr, with BMI 27.3 ± 2.0 kg/m2.

Assessments included total body fat by DEXA, lipoproteins, blood pressure, HOMA-IR, C-reactive protein (CRP), and estimated 10-yr CHD risk score. Body fat decreased by 6.3 ± 3.8 kg in CR, 5.6 ± 4.4 kg in EX, and 0.4 ± 1.7 kg in HL, which corresponded to reductions of 24.9, 22.3, and 1.2% of baseline body fat mass, respectively.

The energy deficits [induced by either caloric restriction or exercise] were accompanied by reductions in most of the major CHD risk factors, including plasma LDL-cholesterol, total cholesterol/HDL ratio, HOMA-IR index, and CRP concentrations that were similar in the two intervention groups.

Data from the present study provide evidence that [both calorie restriction and exercise-induced] negative energy balance result in substantial and similar improvements in the major risk factors for coronary heart disease in normal-weight and overweight middle-aged adults.

SOURCE: Am J Physiology

Quercetin reduces blood pressure in hypertensive subjects

black currant berries

Abstract

Epidemiological studies report that quercetin, an antioxidant flavonol found in apples, berries, and onions, is associated with reduced risk of coronary heart disease and stroke. Quercetin supplementation also reduces blood pressure in hypertensive rodents. The efficacy of quercetin supplementation to lower blood pressure in hypertensive humans has never been evaluated.

We tested the hypothesis that quercetin supplementation reduces blood pressure in hypertensive patients. We then determined whether the antihypertensive effect of quercetin is associated with reductions in systemic oxidant stress. Men and women with prehypertension (n = 19) and stage 1 hypertension (n = 22) were enrolled in a randomized, double-blind, placebo-controlled, crossover study to test the efficacy of 730 mg quercetin/d for 28 d vs. placebo. Blood pressure (mm Hg, systolic/diastolic) at enrollment was 137 +/- 2/86 +/- 1 in prehypertensives and 148 +/- 2/96 +/- 1 in stage 1 hypertensive subjects.

Blood pressure was not altered in prehypertensive patients after quercetin supplementation. In contrast, reductions in (P < 0.01) systolic (-7 +/- 2 mm Hg), diastolic (-5 +/- 2 mm Hg), and mean arterial pressures (-5 +/- 2 mm Hg) were observed in stage 1 hypertensive patients after quercetin treatment. However, indices of oxidant stress measured in the plasma and urine were not affected by quercetin.

These data are the first to our knowledge to show that quercetin supplementation reduces blood pressure in hypertensive subjects. Contrary to animal-based studies, there was no quercetin-evoked reduction in systemic markers of oxidative stress. 

SOURCE: Journal of Nutrition